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FOREWORD 

Personalized medicine is a future paradigm of healthcare that can offer right treatment to the patient at the right time to 
achieve safer and more effective treatment of diseases [1]. Identified as one of the Grand Challenges for Engineering in the 
21st century by the National Academy of Engineering [2], it is a goal that today’s biomedical engineering community strives to 
fulfill in order to make ground-breaking changes to current medical services offered as “one size fits all,” such as titration of 
opioid for pain that is guided by expert opinion and experience [3] and vasopressor therapy titrated to mean arterial pressure 
greater than a fixed threshold value [4]. 

Systems biology can play a crucial role in expediting the paradigm shift from current reactive medicine to predictive and 
preventative medicine for disease diagnostics and therapy [5]. Considering that today’s personalized medicine still relies 
heavily on manual drug titration (e.g., pain medicine [3] and vasopressor [4]) and population-based therapeutic index/drug 
levels (e.g., cancer [6], [7]), and also as evidenced by recent initiatives arising in academia (e.g., [8]), technological leap in 
systems biology including pharmacogenomics, pharmacokinetics, pharmacodynamics etc. can catalyze fundamental changes 
in the next-generation healthcare, by predicting the risk of disease development in an individual and providing personalized 
treatment recommendations such as automated drug selection and dose adjustments.  

The fact that mathematical models are a vital component of systems biology highlights the significance of the inverse problem. 
The inverse problem is a gateway to unveil the nature of a biological system from the understanding (e.g., through 
observations) of the overall behavior of the system. As such, it plays a crucial role in (i) testing the relevance and validity of a 
mathematical model proposed for a biological system/process by fitting the model to observations, and also in (ii) actually 
benefiting the personalized treatments of combat casualties and civilians with wounds and/or diseases by individualizing the 
validated mathematical model (i.e., adapting the model to each individual).  Therefore, the ability to solve the inverse problems 
for mathematical models used in the systems biology study (e.g., mechanistic models) can potentially enhance our 
understanding of complex biological processes (by testing the relevance of a range of empirical and mechanistic models) and 
also contribute to the real-world healthcare through personalizing medicine and therapy. 

Traditionally, an inverse problem has been formulated so that an assumed mathematical model is fitted to an input-output data 
pair observed from the target biological system/process.  However, there are situations where the availability of input-output 
observations is limited.  In particular, there is a class of biological processes in which only the outputs can be observed but not 
the input(s).  For instance, in cancer chemotherapy, the effect of anti-cancer drug on tumor growth can be understood by 
identifying an input-output relationship (or model) between the drug concentration and the resulting tumor size.  However, 
taking drug concentration measurements directly in the tumor cells during the therapy is extremely difficult [9].  Other drug 
therapies, including pain medicine, vasopressors and type 2 diabetes mellitus, basically suffer from the same problem.  Even 
in cell biology, variability and uncertainty in cellular responses to an identical excitation at the culture fluid level are inevitably 
regarded as random noise and abandoned from subsequent analysis, largely because they cannot be interpreted in the 
absence of a measure indicative of the actual excitation acting on the cells.  It is obvious that, due to the absence of input 
observations, the standard inverse problem framework is not applicable to this class of systems and processes.  Considering 
a wide range of real-world clinical applications associated with this class of biological processes (as listed above), developing 
novel methods and approaches to solve inverse problems for these systems can make enormous impacts on (i) advancing the 
scientific state-of-the-art as well as on (ii) expediting the developments in personalized medicine. 

The goal of the proposed project is to develop and test the feasibility of a novel approach to solve the inverse problem for a 
class of systems arising from systems biology study, in which input is unknown (e.g. cannot be observed) but multiple outputs 
can be observed.  As mentioned above, the most significant challenge associated with this class of inverse problems is that 
the standard approach to inverse problem (where the parameters of the mechanistic model are optimized to fit the input-output 
data) is not applicable in the absence of system input observation.  To resolve this challenge, this project proposes to exploit 
the commonality shared by the outputs that originate from the same input.  Indeed, noting that these outputs originate from the 
identical input, a relationship between these outputs can be formulated, which can subsequently be utilized in solving the 
inverse problem without necessitating the input observations. 
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1. PROBLEM STATEMENT 

In this project, a generic mechanistic model in which each input-output relationship is given by a cascade connection of a 
linear dynamic system, a static nonlinear function and an indirect response mechanism is considered.  Consider Figure 1, in 
which the input to the system is unknown but multiple outputs from the system can be observed.  In particular, this project 
considers systems with two output observations, which results in the most challenging inverse problem of this kind.  The 
system is described by a class of mechanistic model called the indirect response model, used widely in systems biology at 
multiple different scales from cell signaling and receptor theory to quantitative pharmacology. In Figure 1,   is the input,    is 

the j-th response (output),    (      ) and    (      ) are the saturating nonlinear functions representing stimulation and/or 

inhibition effects of the input,     and     are the rate constants for production and loss of the response, and    is the time 

constant associated with the distribution of the input to the site(s) of action: 

 ̇        (      )        (      )  
    ̇       

       (1) 

In this class of models, the input   is delayed by the latency model     ̇        to produce   .  From the traditional 

pharmacological perspective,   and    can be regarded as the concentration of a medication agent in the blood and at the site 

of action, respectively.     is then translated to the stimulation and/or inhibition effects acting upon the production (through 

   (      )) and dissipation (through    (      )) of the response   .  The resulting response    is then elicited by the model 

 ̇        (      )        (      )  .  This class of mechanistic models has been widely used in systems biology and 

pharmacology [10, 11], including mechanistic modeling studies in cancer chemotherapy (e.g., [12, 13]), anti-diabetic drugs 
(e.g., [14]) and HIV (e.g., [15]). 

 
 

 

Figure 1: Systems biology process described by a class of mechanistic models. Two outputs are available as observations but 
input observation is not available. In this project, the inverse problem for this class of biological systems will be solved by 
exploiting the commonality shared by the output observations in the absence of input observations. 
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2. SUMMARY OF THE MOST IMPORTANT RESULTS 

The goal of this project is to develop a novel approach to solve inverse problems for a class of systems biology models with 
unknown inputs, and test the validity and feasibility of the approach.  The specific aims of the proposed project are to (i) 
develop a systematic inverse modeling procedure and (ii) to assess its preliminary feasibility with numerical example(s). 

 

2.1. High-Level Overview 

In this project, we achieve the above specific aims as follows.  Based on the model shown in Figure 1, we consider 3 problems 
having increasing complexities: (i) steady-state dose-response problem (Figure 2a), (ii) indirect dose-response problem with 
immediate dose effect (Figure 2b), and (iii) indirect dose-response problem with latency in dose effect (Figure 2c).  For each of 
these inverse problems, we first study the solvability of the problem in terms of the identifiability of model parameters.  We 
elucidate the best extent to which the model parameters can be identified from two output observations, as well as the 
circumstance(s) under which this can be achieved.  We then establish a step-by-step procedure to identify the model.   
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Figure 2: The class of inverse problem pursued in this project.  (a) Steady-state dose-response problem.  (b) Indirect dose-
response problem with immediate dose effect.  (c) Indirect dose-response problem with latency in dose effect. 

 

2.2. Steady-State Dose-Response Problem 

The steady-state dose-response problem is obtained by eliminating all the dynamic (i.e., time derivative) terms from Eq. (1): 

      (      )        (      )  
    

       (2) 

In the systems biology models, the simulation and inhibition effects are often given by the following saturation function: 

   (      )    
     

      
    (      )    

     

      
       (3) 

where     {       } and     {       }.  It is obvious that the “+” sign represents stimulation while the “-” sign represents 

inhibition.  Besides, we assume that the initial values of the outputs   (   ) before the application of the input (i.e.,     

for    ), are available.  Since    (      )     (      )    if    , we have: 

                (4) 

Combining Eq. (2)-(4) results in the following relation between    and   : 

[  
     

      
]   ( )  [  

     

      
]   ( )       (5) 

Most often, the stimulation/inhibition effect acts only upon production (i.e., to    ) or dissipation (i.e., to    ).  In case the effect 

acts upon production, Eq. (5) reduces to: 
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[  
     

      
]   ( )    ( )       (6a) 

whereas in case the effect acts upon dissipation: 

  ( )  [  
     

      
]   ( )       (6b) 

Therefore, any steady-state dose-response can be represented by the following unified relation: 

  ( )  [  
    

     
]        (7) 

where   ( )    ( )   ( )⁄  if stimulation/inhibition effect acts upon production, and   ( )    ( )   ( )⁄  if the effect acts 

upon dissipation.  Then, the inverse problem for steady-state dose-response problem reduces to solving the following relation 
for    and   ,      : 

  
    

        
   

    

        
 (8) 

 

2.2.1. Identifiability Analysis 

For the steady-state dose-response problem in Eq. (8), we make the following claim on the identifiability: 

 

CLAIM 1: Identifiability of Steady-State Dose-Response Model 

Consider the steady-state dose-response model in Eq. (8).  Based on two output observations   ( ),      , the following 

parameters can be identified: 

   
    
    

 

   (
 

  
 
 

  
)
  
  

 

(9) 

PROOF 1: See Appendix 1. 

 

Several physical insights can be obtained from CLAIM 1.  First, the individual parameter values cannot be identified just by 
solving Eq. (8).  This can also be understood by reformulating Eq. (8) as follows: 

 

    
   

 

    
    (10) 

So, the two parameters    and    are sufficient to specify the relation between      and     .  In many real-world 

problems, however, full effects are typically assumed for    (      ) and    (      ) (so that      and/or     ).  In this 

regard, 3 practically useful scenarios can be conceived: 

1)     ,      : In this case, Eq. (9) returns a unique value of     ⁄  (see the discussion below). 

2)     ,     or    : In this case, Eq. (9) returns a unique values of     ⁄  and     . 

3)       ,   known a priori: In this case, Eq. (9) returns a unique values of     ⁄  and   ,      . 

Second,   ,       cannot be uniquely determined just by solving Eq. (8).  This indeed makes sense, since by the problem 

formulation the input to the system   is unknown.  In fact, an important consequence of input being unknown is that its scale is 
also unknown.  To illustrate, suppose the input was doubled in the steady-state dose-response model shown in Eq. (7) (i.e., 



64433-MA-II: Solving Inverse Problems for Mechanistic Systems Biology Models with Unknown Inputs (HAHN, Jin-Oh) 

7 
 

      ).  It is possible to keep   ( ) consistent simply by doubling   .  This recognition indicates that the absolute values of 

   cannot be identified based on Eq. (8); rather, only the ratio between    and   ,     ⁄ , can be identified. 

 

2.2.2. Inverse Problem Solution Procedure 

Given   ( ),         and      , the steady-state dose-response problem can be solved by the following procedure: 

1) Form   ( )    ( )   ( )⁄ ,      . 

2) Form Eq. (10) and formulate into a least-squares problem to identify    and   : 

{  
    

 }        
{     }

‖
 

    
   

 

    
   ‖ 

 

2.3. Indirect Dose-Response Problem with Immediate Dose Effect 

The indirect dose-response problem with immediate dose effect is obtained by eliminating the latency model     ̇        

from Eq. (1): 

 ̇        (      )        (      )  
    

       (11) 

It is assumed that 1) the saturation function in Eq. (3) is used to represent the simulation and inhibition effects, and that 2) the 
stimulation/inhibition effect acts only upon production or dissipation.  In contrast to the steady-state dose-response problem in 
which the inverse problem reduces to the unified relation in Eq. (8) regardless of how the stimulation/inhibition effect acts upon 
the biological system (i.e., whether it acts upon production or dissipation), the indirect dose-response problem yields three 
relations depending on the nature of the stimulation/inhibition effect as follows. 

1) If both indirect response outputs   ( ) and   ( ) are subject to stimulation/dissipation effect acting upon production, 
each indirect response model reduces to the following: 

 ̇        (     )              (12a) 

2) If both indirect response outputs   ( ) and   ( ) are subject to stimulation/dissipation effect acting upon dissipation, 
each indirect response model reduces to the following: 

 ̇            (     )         (12b) 

3) If one indirect response output (say   ( )) is subject to stimulation/dissipation effect acting upon production while 

the other (say   ( )) is subject to stimulation/dissipation effect acting upon dissipation, the indirect response model 
reduces to the following: 

 ̇        (     )         ̇            (     )   (12c) 

Firstly, consider Eq. (12a).  Using Eq. (3)-(4), Eq. (12a) reduces to 

   (     )    
   

    
 
 ̇    ⁄    

   
 
 ̇
 

   
  

 
       (13) 

where         ⁄ .  So, solving Eq. (13) for   yields: 

    
 ̇    ⁄    

     ̇    ⁄    
       (14) 

where        .  In sum, the inverse problem for indirect dose-response problem with immediate dose effect acting upon 

production reduces to solving the following relation for   ,    and    ,      : 
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 ̇    ⁄    

     ̇    ⁄    
   

 ̇    ⁄    
     ̇    ⁄    

 (15) 

 

Secondly, consider Eq. (12b).  Using Eq. (3)-(4), Eq. (12b) reduces to 

   (     )    
   

    
 
     ̇ 

     
       (16) 

where         ⁄ .  So, solving Eq. (16) for   yields: 

     
 ̇    ⁄    

 ̇    ⁄       (    )
       (17) 

where        .  In sum, the inverse problem for indirect dose-response problem with immediate dose effect acting upon 

dissipation reduces to solving the following relation for   ,    and    ,      : 

  
 ̇    ⁄    

 ̇    ⁄       (    )
   

 ̇    ⁄    
 ̇    ⁄       (    )

 (18) 

 

Thirdly, consider Eq. (12c).  Using Eq. (3)-(4), Eq. (14) and Eq. (17), Eq. (12c) reduces to 

    
 ̇    ⁄    

     ̇    ⁄    
      

 ̇    ⁄    
 ̇    ⁄       (    )

 (19) 

In sum, the inverse problem for indirect dose-response problem with immediate dose effect acting upon production (  ( )) 
and dissipation (  ( )) reduces to solving the following relation for   ,    and    ,      : 

  
 ̇    ⁄    

     ̇    ⁄    
    

 ̇    ⁄    
 ̇    ⁄       (    )

 (20) 

 

2.3.1. Identifiability Analysis 

For each of the three relations presented in Eq. (12), we make the following claims on the identifiability: 

 

CLAIM 2: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (15) 

Consider the indirect dose-response model with immediate dose effect in Eq. (12a).  Based on two output observations   ( ), 

     , the following parameters can be identified: 

   
    
    

    (
 

  
 
 

  
)
  
  
         (21) 

PROOF 2: See Appendix 2. 

 

CLAIM 3: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (18) 

Consider the indirect dose-response model with immediate dose effect in Eq. (12b).  Based on two output observations   ( ), 

     , the following parameters can be identified: 

   
    
    

    (
 

  
 
 

  
)
  
  
         (22) 

PROOF 3: See Appendix 3. 
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CLAIM 4: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (20) 

Consider the indirect dose-response model with immediate dose effect in Eq. (12c).  Based on two output observations   ( ), 

     , the following parameters can be identified: 

   
    
    

    (
 

  
 
 

  
)
  
  
         (23) 

PROOF 4: See Appendix 4. 

 

It is noted that the models in Eq. (15), Eq. (18) and Eq. (20) above can be cast into a unified model of the following form: 

 

  ( )
   

 

  ( )
    (24) 

where   ( ),       is given by  

 ̇ 

   
    (25a) 

in case of Eq. (15), whereas   ( ),       is given by 

 (
 

   

 ̇ 

    
 

  

    
) (25b) 

in case of Eq. (18).  Accordingly, in case of Eq. (20),   ( ),       is given by 

  ( )  
 ̇ 
   

      ( )   (
 

   

 ̇ 
    

 
  

    
) (25c) 

It can be shown that, using Eq. (24), equivalent linear regression models for Eq. (15), Eq. (18) and Eq. (20) that contain   ,   , 
    and     as unknown parameters can be obtained.  For example, for Eq. (15), the following linear regression model can 
be derived from Eq. (24) and Eq. (25a): 

    
 

   
 ̇  

  
   

 ̇       
  

      
 ̇  ̇  

  
   

 ̇    
  
   

   ̇         (26) 

which clearly illustrates that the unknowns listed in Eq. (21) can be readily identified. 

 

2.3.2. Inverse Problem Solution Procedure 

Given   ( ),         and      , the indirect dose-response problem with immediate dose effect can be solved by the 

following procedure: 

1) Form   ( )    ( )   ( )⁄ ,      . 

2) Using the steady-state dose-response data, form Eq. (10) and formulate into a least-squares problem to identify    

and   : 

{  
    

 }        
{     }

‖
 

    
   

 

    
   ‖ 

3) Using the transient (or alternatively, all the) dose-response data, formulate Eq. (24) into a least-squares problem to 
identify     and    : 

{   
     

 }        
{       }

‖
 

  (     )
   

 

  (     )
   ‖ 

where   ( ),       is given by Eq. (25). 
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2.4. Indirect Dose-Response Problem with Latency in Dose Effect 

The indirect dose-response problem with latency in dose effect concerns Eq. (1).  It is assumed that 1) the saturation function 
in Eq. (3) is used to represent the simulation and inhibition effects, and that 2) the stimulation/inhibition effect acts only upon 
production or dissipation.  Similarly to the indirect dose-response response problem with immediate dose effect, this problem 
yields three relations depending on the nature of the stimulation/inhibition effect as follows. 

1) If both indirect response outputs   ( ) and   ( ) are subject to stimulation/dissipation effect acting upon production, 
each indirect response model reduces to the following: 

 ̇        (      )       
    ̇       

       (27a) 

2) If both indirect response outputs   ( ) and   ( ) are subject to stimulation/dissipation effect acting upon dissipation, 
each indirect response model reduces to the following: 

 ̇            (      )  
    ̇       

       (27b) 

3) If one indirect response output (say   ( )) is subject to stimulation/dissipation effect acting upon production while 

the other (say   ( )) is subject to stimulation/dissipation effect acting upon dissipation, the indirect response model 
reduces to the following: 

 ̇        (      )         ̇            (      )  
    ̇       

       (27c) 

Firstly, consider Eq. (27a).  Defining        ,         ⁄  and    (      )        [     ]⁄       (      ), 

the indirect dose-response model  ̇        (      )        reduces to the following: 

 ̇     [   (      )    ]        (28) 

Then,    can be expressed in terms of    as follows: 

   
     (      )

       (      )
 

  [
 ̇ 
   
   ]

    [
 ̇ 
   
   ]

       (29) 

Therefore, it is possible to denote    (      )     (      ).  Then, since  ̇       ̇  (      ) [       (      )]
 

⁄ , the 

latency model can be rewritten as follows: 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
         (30) 

In sum, the inverse problem for indirect dose-response problem with latency in dose effect acting upon production reduces to 
solving the following relation for   ,   ,     and   ,      : 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 (31) 

where 

   (      )  
 ̇ 

   
     ̇  (      )  

 ̈ 

   
  ̇  (32) 
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Secondly, consider Eq. (27b).  Defining    and    as above and    (      )        [     ]⁄       (      ), the 

indirect dose-response model  ̇            (      )   reduces to the following: 

 ̇     [   (      )     ]        (33) 

Then,    can be expressed in terms of    as follows: 

   
     (      )

       (      )
 

  [
 ̇ 
   
   ]

      [
 ̇ 
   
   ]

 

  [
 ̇ 
   
   ]

   (    )  [
 ̇ 
   
   ]

       (34) 

Therefore, it is possible to denote    (      )     (      ).  Then, since  ̇       ̇  (      ) [       (      )]
 

⁄ , 

the latency model can be rewritten as follows: 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
         (35) 

In sum, the inverse problem for indirect dose-response problem with latency in dose effect acting upon dissipation reduces to 
solving the following relation for   ,   ,     and   ,      : 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 (36) 

where 

   (      )   
 ̇       

   (    )
  ̇  (      )   

 ̈ (    )      ̇   ̇ 
 

   (    )
  (37) 

 

Thirdly, consider Eq. (27c).  Using Eq. (30) and Eq. (35), Eq. (27c) reduces to 

  
       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
   

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 (38) 

In sum, the inverse problem for indirect dose-response problem with immediate dose effect acting upon production (  ( )) 
and dissipation (  ( )) reduces to solving the following relation for   ,    and    ,      : 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 

       ̇  (      )

[       (      )]
 
 

     (      )

       (      )
 (39) 

where 

   (      )  
 ̇ 
   

       (      )   
 ̇       
   (    )

 (40) 

 

2.4.1. Identifiability Analysis 

The models in Eq. (31), Eq. (36) and Eq. (39) can be cast into a unified model of the following form, which can be viewed as 
an expanded version of Eq. (24) that includes the latency in dose effect: 

  ( )      ( )      ( )  ( )    
  
  
 ̇ ( )

     ( )

     ( )
   

  
  
 ̇ ( )

     ( )

     ( )
 (41) 
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where   ( ),       is given by Eq. (25a) for Eq. (31), Eq. (25b) for Eq. (36), and Eq. (25c) for Eq. (39).  Noting that   ( ) 

can be written as the following unified form: 

  ( )  
  

   
    (42) 

where    and    can be constructed from measurements (and thus can be regarded as known), the identifiability of the 

indirect dose-response problem with latency in dose effect can be analyzed by investigating the identifiability property of Eq. 
(41).  We make the following claim on the identifiability. 

 

CLAIM 5: Identifiability of Indirect Dose-Response Model with Latency in Dose Effect 

Consider the indirect dose-response model with latency in dose effect in Eq. (41).  Based on two output observations   ( ), 

     , the following parameters can be identified: 

                    
  
  

 (43) 

PROOF 5: See Appendix 5. 

 

2.4.2. Inverse Problem Solution Procedure 

Given   ( ),         and      , the indirect dose-response problem with immediate dose effect can be solved by the 

following procedure: 

1) Form   ( )    ( )   ( )⁄ ,      . 

2) Using the steady-state dose-response data, form Eq. (10) and formulate into a least-squares problem to identify    
and   : 

{  
    

 }        
{     }

‖
 

    
   

 

    
   ‖ 

3) Using the transient (or alternatively, all the) dose-response data, formulate Eq. (41) into a least-squares problem to 

identify   ,   ,    ,    ,   ,    and     ⁄ : 

   ‖  ( )      ( )      ( )  ( )    
  
  
 ̇ ( )

     ( )

     ( )
   

  
  
 ̇ ( )

     ( )

     ( )
‖ 

where   ( ),       is given by Eq. (42). 
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3. BENCHMARK EXAMPLES 

The efficacy of the proposed inverse modeling approach is demonstrated using 3 benchmark examples: bronchodilator, anti-
cancer drug and vasopressor. 

 

3.1. Terbutaline Dose-Response Modeling [16] 

Terbutaline is a fast-acting bronchodilator, which is often used as short-term treatment aid for asthma.  In a previous study, a 
pharmacological model dictating the effect of plasma concentration of terbutaline on the changes in glucose, insulin and 
potassium concentrations in healthy adults was developed.  In this project, this model was adopted as a benchmark problem 
where the relations between the plasma concentration of terbutaline versus glucose and potassium concentrations were 

derived from the measurements of glucose and potassium.  The model relating the plasma concentration of terbutaline ( ) to 
glucose (  ) is given by: 

 ̇     (  
   

    
)     (   ( ))   (44) 

where  ( ) is a known function of insulin concentration  , while the model relating the plasma concentration of terbutaline to 
potassium is given by: 

 ̇         (  
   

    
)   (45) 

So, the problem reduces to an indirect dose-response problem with immediate dose effect.  The plasma concentration of 
terbutaline   was generated by using a pharmacokinetic model, which was derived by fitting a two-compartment model to the 
data reported in a previous study [16].  A set of escalating infusion rates was used to produce response data employed in 
solving the inverse problem (see Figure 3 for the time courses of terbutaline infusion rate, terbutaline plasma concentration, 
glucose concentration and potassium concentration).  The “true” parameter values used in the simulation are summarized in 
Table 1. 

 

Figure 3: Time courses of terbutaline infusion rate, glucose concentration and potassium concentration. 
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Table 1: Parameter values used in terbutaline dose-response modeling and the corresponding estimates. 

               

True Values 1.3263 0.0995 0.0724 0.0324 

Estimates 1.3263+/-0.0000 0.0995+/-0.0000 0.0724+/-0.0000 0.0324+/-0.0000 

 

The inverse problem was solved using a MATLAB’s numerical optimization function to yield the estimates of the parameters in 
Table 1.  In solving the problem, a set of 20 random initial guesses for the parameters (within +/-30 % of each of the true 
parameter values in Table 1) was used to assess the robustness of the proposed inverse modeling approach.  The resulting 
distributions of the estimates are summarized in Table 1. 

 

3.2. Anti-Cancer Drug Dose-Response Modeling 

cMet and hepatocyte growth factor (HGF) have been implicated in the development and progression of multiple human 
cancers and are attractive targets for cancer therapy.  PF02341066 is a compound that was shown to be effective in inhibiting 
cMet phosphorylation and signal transduction as well as cMet-dependent proliferation, migration or invasion of human tumor 
cells, and also exhibits anti-angiogenic properties [17].  In a previous study, a pharmacological model that relates the plasma 
concentration of PF02341066 to cMet phosphorylation in tumor and tumor volume was developed [12].  In this project, this 
model was used as a benchmark problem where the pharmacological relations between the plasma concentration of 
PF02341066 versus cMet phosphorylation and tumor volume were derived from their measurements.  The model relating the 

effect site concentration of PF02341066 (  ) to cMet phosphorylation is given by: 

 ̇     (  
    
     

)        (46) 

while the model relating the plasma concentration of PF02341066 ( ) to tumor volume is given by: 

 ̇     (  
   

    
)         (       ) [  

(  (       )⁄ ) 

    
]   (47) 

So, the problem reduces to an indirect dose-response problem with latency in dose effect in    and immediate dose effect in 

  .  The plasma concentration of PF02341066   was generated by using a pharmacokinetic model, which was derived by 
fitting a single compartment model with first-order absorption to the data reported in a previous study [12].  A set of impulse 
doses was used to produce response data employed in solving the inverse problem (see Figure 4 for the time courses of 
PF02341066 dose, PF02341066 plasma concentration, cMet phosphorylation and tumor volume).  The “true” parameter 
values used in the simulation are summarized in Table 2. 
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Figure 4: Time courses of PF02341066 dose, cMet phosphorylation and tumor volume. 

 

Table 2: Parameter values used in PF02341066 dose-response modeling and the corresponding estimates. 

                      ⁄  

True Values 1 2.070 20 0.0063 7.353 11.514 

Estimates 1.0000+/-0.0000 2.0710+/-0.0001 20.019+/-0.0013 0.0063+/-0.0000 7.3672+/-0.0002 11.5176+/-.0004 

 

The inverse problem was solved using a MATLAB’s numerical optimization function to yield the estimates of the parameters in 
Table 2.  In solving the problem, a set of 20 random initial guesses for the parameters (within +/-30 % of each of the true 
parameter values in Table 2) was used to assess the robustness of the proposed inverse modeling approach.  The resulting 
distributions of the estimates are summarized in Table 2. 

 

3.3. Frusemide Dose-Response Modeling 

The pharmacodynamics of frusemide in terms of diuresis and natriuresis can be modeled by indirect response model [18].  In 
this project, a modified version of this model was used as a benchmark problem where the pharmacological relations between 
the plasma concentration of frusemide versus its diuretic and natriuretic effects were derived from their measurements.  The 
model relating the effect site excretion rate of frusemide (  ) to diuresis is given by: 
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 ̇         (  
    
     

)   (48) 

while the model relating the effect site excretion rate of frusemide (  ) to natriuresis is given by: 

 ̇         (  
    
     

)   (49) 

So, the problem reduces to an indirect dose-response problem with latency in dose effects.  The urinary excretion rate of 
frusemide   was generated by using a pharmacokinetic model, which was derived by fitting a three-compartment model to the 
data reported in a previous study [18].  A set of escalating infusion rates superimposed by a sequence of uniform random 
numbers was used to produce response data employed in solving the inverse problem (see Figure 5 for the time courses of 
frusemide infusion rate, frusemide urinary excretion rate, diuresis and natriuresis).  The “true” parameter values used in the 
simulation are summarized in Table 3. 

 

Figure 5: Time courses of frusemide infusion rate, diuresis and natriuresis. 

 

Table 3: Parameter values used in flusemide dose-response modeling and the corresponding estimates: mean (SD). 

                         ⁄  

True Values 0.9100 0.9600 74 260 0.4762 0.0989 0.3649 

Estimates 
0.9089+/-

0.0021 
0.9596+/-

0.0007 
72.7886+/- 

1.3256 
261.2992+/-

6.6937 
0.4881+/-

0.0106 
0.1026+/-

0.0025 
0.3621+/-

0.0006 

 

The inverse problem was solved using a MATLAB’s numerical optimization function to yield the estimates of the parameters in 
Table 3.  In solving the problem, a set of 20 random initial guesses for the parameters (within +/-30 % of each of the true 
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parameter values in Table 3) was used to assess the robustness of the proposed inverse modeling approach.  The resulting 
distributions of the estimates are summarized in Table 3. 
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4. Conclusions 

This study proposed and demonstrated the feasibility of deriving data-driven model of a class of mechanistic biological system 

models from output responses alone.  Mathematical analysis was performed to elucidate the identifiability property of the 

approach, which was then validated with benchmark numerical examples.  In sum, the approach proposed in this study (called 

the “endpoint information fusion”) can be very useful in deriving data-driven models of a class of mechanistic biological system 

models, which is potentially applicable to wide-ranging systems biology investigations. 

 

This study leaves room for open challenges that need to be rigorously addressed in the follow-up studies.  First, this study 

showed that filtered white noise is effective in deriving high-fidelity data-based models (especially the parameters in the model 

responsible for dynamic responses, i.e., effect compartment time constant).  However, no systematic analysis was performed 

in this study to understand how to select/optimize dynamic inputs required to derive high-fidelity data-based models.  Future 

studies to address this issue need to be conducted.  Second, this study showed the feasibility of batch inverse modeling 

based on the endpoint information fusion approach.  In reality, however, the underlying biology varies as the system profile 

varies.  Future studies on recursive inverse modeling based on the endpoint information fusion approach are thus warranted.  

Third, this study examined the endpoint information fusion approach via simulation to establish its initial proof-of-principle.  To 

make a strong claim on its efficacy, follow-up work on experimental validation of the approach must be conducted. 
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APPENDIXES 

 

Appendix 1. Proof of Claim 1: Identifiability of Steady-State Dose-Response Model 

Starting from Eq. (8) we write: 

  
    

        
   

    

        
 (A.1) 

Inverting both sides we have: 

 

  

        
    

 
 

  

        
    

 (A.2) 

Next multiplying both sides by    we may write: 

   
    

 
  
  

   
    

 (  
  
  
) (A.3) 

And then we divide by    : 

 

    
 
  
  

  
  
 
 

    
 (

 

  
 
 

  
)
  
  

 (A.4) 

Finally, by denoting 
  

  

  

  
    and (

 

  
 

 

  
)
  

  
    we arrive at the linear parametric model: 

      (A.5) 

in which the regressor vector is defined as: 

  [
 

    
 ]
 

 (A.6) 

and the unknown parameter vector is defined as: 

  [    ]
  (A.7) 

So,   is identifiable as long as informative data are provided to solve Eq. (A.5). 

 

Appendix 2. Proof of Claim 2: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (13) 

Starting from Eq. (13) we write: 

  
  

 ̇    ⁄    
     ̇    ⁄    

 
 ̇    ⁄    

     ̇    ⁄    
 (A.8) 

By multiplying both sides of Eq. (A.8) by the product of the denominators, we have: 

  
  
(   ) (

 ̇ 
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   ̇ 
   

     )    (A.9) 

Next, by expanding Eq. (A.9) and collecting terms of    and    and their derivatives, we have: 
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(A.10) 

Next, we multiply Eq. (A.15) by        to achieve the linear parametric formulation: 
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(A.11) 

By using              and    (
 

  
 

 

  
)
  

  
, we may write: 

   (   )     
   
   

(  ̇ )       (   )  
  
   

 ̇  ̇    
   
   

  ̇         ̇               ̇   (A.12) 

So, we arrive at the linear parametric model: 

    ̇   
   (A.13) 

where the regressor vector is defined as: 

  [     ̇     ̇  ̇  ̇      ̇     ]  (A.14) 

and the unknown parameter vector is defined as: 

  [     
   
   

     
  
   

  
   
   

       ]  (A.15) 

So,   is identifiable as long as informative data are provided to solve Eq. (A.13).  Thus,   ,   ,     and     are identifiable 
as long as informative data are provided to solve Eq. (A.13). 

 

Appendix 3. Proof of Claim 3: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (16) 

Starting from Eq. (18) we write: 

  
  
 

 ̇    ⁄    
 ̇    ⁄       (    )
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 ̇    ⁄       (    )
 (A.16) 

By multiplying both sides by the product of the denominators of the two fractions, we have: 
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(A.17) 

Now upon expanding, dividing both sides by   , and using    
    

    
 and    (

 

  
 

 

  
)
  

  
 we may write: 
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(A.18) 

So, we arrive at the linear parametric model: 

           
   (A.19) 

where the regressor vector is defined as: 

  [ ̇  ̇  ̇      ̇      ( ̇   ̇   ) (       )  ( ̇   ̇   )]  (A.20) 

and the unknown parameter vector is defined as: 
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  [
  

      

  
   

  
   

  
  
   

  
 

   
]  (A.21) 

So,   is identifiable as long as informative data are provided to solve Eq. (A.19).  Thus,   ,   ,     and     are identifiable. 

 

Appendix 4. Proof of Claim 4: Identifiability of Indirect Dose-Response Model with Immediate Dose Effect in Eq. (18) 

Starting from Eq. (20) we write: 
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 (A.22) 

By multiplying both sides by the product of the denominators of the two fractions, we have: 
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Next, by expanding both sides and using    
    

    
 and    (
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, we have: 
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So, we arrive at the linear parametric model: 

       
   (A.25) 

where the regressor vector is defined as: 

  [ ̇  ̇  ̇    ̇        ( ̇   ̇   )  (       )   ̇ ]  (A.26) 

and the unknown parameter vector is defined as: 

  [
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  (A.27) 

So,   is identifiable as long as informative data are provided to solve Eq. (A.25).  Thus,   ,   ,     and     are identifiable. 

 

Appendix 5. Proof of Claim 5: Identifiability of Indirect Dose-Response Model with Latency in Dose Effect 

Starting from (41): 

  ( )      ( )      ( )  ( )    
  
  
 ̇ ( )

     ( )

     ( )
   

  
  
 ̇ ( )

     ( )

     ( )
 (A.28) 

Multiplying both sides by (     ( ))(     ( )) yields: 

(              )(     )(     )    
  
  
 ̇ (     )

    
  
  
 ̇ (     )

  (A.29) 

which is expanded to the following: 

(              )(                   )

   
  
  
 ̇ (  

    
       )    

  
  
 ̇ (  

    
       ) 

(A.30) 

which can be rearranged to the following: 
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(A.31) 

Now dividing both sides of (A.36) by        yields: 
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(A.32) 

Next expanding    and    and using (42), (A.32) reduces to: 

  
     

 
  
  
  (

 

    
)(
  
 

   
    

  
     
   

) 
  
  
(
  
   

   )

 (
  
    

 
 

    
 
  
  
)(
    
      

 
    
   

 
    
   

     )  
  
    

(
  
 

   
    

  
     
   

)

 
       
      

(
  
   

   
    

 
  
   

   
  

  
   
   

   
    

       
      

 
       
   

)

 
(      )

      
(
  
   

   
    

 
  
   

   
  

  
   
   

   
    

       
      

 
       
   

) 

 
  

      
(
  
   

 

   
    

  
  
   
 

   
  

   
     

   
    

 
  
   
 

   
    

   
  

     
   

   
 
     

   

      
  

       
 

   

 
         
      

) 

 
  
  

    
    

 (
 ̇ 
   

   ̇)  
  
  

  
      

(
  ̇   

 

      
  

  ̇   
 

   
 
   ̇     
      

 
 ̇   

 

   
   ̇   

  
  ̇     
   

)

  
  
  

  
    

(
 ̇   
      

 
  ̇   
   

 
 ̇   
   

  ̇   )  
 ̇ 
   

 

 
 

  
 (
  ̇   

 

      
  

  ̇   
 

   
 
   ̇     
      

 
 ̇   

 

   
   ̇   

  
  ̇     
   

)  
 

  
(
 ̇   
      

 
  ̇   
   

 
 ̇   
   

  ̇   ) 

    ̇ 

(A.33) 

 

So, we arrive at the linear parametric model: 

    ̇   
   (A.34) 

Further expansion of (A.34) yields: 

  ̇    
      

    (A.35) 

Where: 
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]
 

 (A.36) 

Note that   
    contains all the other terms in (A.33). From (A.36) we can clearly see that the parameter set (A.37) is uniquely 

identifiable: 

  {                    
  
  
} (A.37) 

 


